If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-102=0
a = 10; b = 0; c = -102;
Δ = b2-4ac
Δ = 02-4·10·(-102)
Δ = 4080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4080}=\sqrt{16*255}=\sqrt{16}*\sqrt{255}=4\sqrt{255}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{255}}{2*10}=\frac{0-4\sqrt{255}}{20} =-\frac{4\sqrt{255}}{20} =-\frac{\sqrt{255}}{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{255}}{2*10}=\frac{0+4\sqrt{255}}{20} =\frac{4\sqrt{255}}{20} =\frac{\sqrt{255}}{5} $
| 11x-3=3(7x-6) | | 9n=5=-85 | | -10-4h=-9h+10 | | 2(20x^2+x-12)=0 | | 1+6b=10+5b | | 3^x+1=5^5 | | 2x+3x=(-10)+6+24 | | 4^+2^x+3=20 | | 2f(3)+3f(2)=5f(2)/f(3)=7 | | (t+24)/9=6 | | 4x^2-22x-24=0 | | 3v=4+4v | | -6x-7x+3x=80 | | 4^x+2^x+3=20 | | x2-6x+2=0 | | 9-3w=-3w+9 | | 4(-5.7)-8y=-4 | | -6x+-7x+3x=80 | | 2/5x-23/24=-3/5-5/6 | | 1. 0.2x+0.7x=27 | | 7=2/3x+4 | | 2f(3)+3f(2)=5 | | 4m-4=9+4m | | 5x+7=7(x+1)+12 | | 2x(-8-4)=9=5x(8)-7 | | 90-2x=66 | | 8z+8-z=9+6z-5 | | 6(x+33)=228 | | 3x0+2=0-2 | | (1-4x)-8=167 | | -9=12x+15 | | 3(3x+4)=68 |